
AL-TP-1 991-0044

AD-A241 842
I|

A THEORETICAL FOUNDATIONS FOR INFORMATiON

R REPRESENTATION AND CONSTRAINT SPECIFICATION

M
S
T DTIC

*jE L. EC-TE I-

0 Christopher P Menzel T 2. 19911f
N Richard J. Mayer

Knowledge Based Systems LaboratoryG Department of Industrial Engineering J
Texas A&M University

College Station, TX 77843

L HUMAN RESOURCES DIRECTORATE
A LOGISTICS RESEARCH DIVISION

B Wright-Patterson Air Force Base, OH 45433-6503

0 91-13637

A , ,
T October 1991

0 Final Technical Paper for Period January 1990 - March 1991

R
Y

Approved for public release; distribution is unlimited.

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE, TEXAS 76235-5000

NOTICES

This technical paper is published as received and has not been edited by the
technical editing staff of the Armstrong Laboratory.

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely Government-related procurement,
the United States Government incurs no responsibility or any obligation whatsoever.
The fact that the Government may have formulated or in any way supplied the said
drawings, specifications, or other data, is not to be regarded by implication, or
otherwise in any manner construed, as licensing the holder, or any other person or
corporation; or as conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto.

The Office of Puolic Affairs has reviewed this paper, and it is releasable to the
National Technical Information Service, where it will be available to the general
public, including foreign nationals.

This paper has been reviewed and is approved for publication.

MICHAEL K. PAINTER, Capt, USAF BERTRAM W. CREAM, Technical Director
Project Scientist Lonistics Research Di.,!slon

J. CIARAK,Colo' el, USAF
ChiLogistics Research Division

Public reporting burden for this collecton f =nVr:toni estimated to everug. I hou r rsoeIncluding the time tor reviewin Instructions, searching exiting data sources.
garnerin and maintaining the data neddI dcmltn n eten i colci nf: nomton. Sendconmments rearsding this burden estimate or aniy other aspec o this
colecio of Information. Including a ugeslions for reducing this burden. to Washington Headquarters Services, Directorate fr Informalion Operations and Repots. 1215 Jefron
Oavis Highway, Suite 1204. Arlingon V 222024302. end to the Office of Management end Budget. Paperwork Reduction Project (0704-0188), Washington. DC 2803.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I October 1991 Final -January 1990 to March 1991
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Theoretical Foundations for I nformation Representation and
Constraint Specification C - F07624-904001

PE - 63106F
6. AUTHOR(S) PR - 2940

TA - 01
Christopher P. Menzel WU - 15
Richard J. Mayer

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 6. PERFORMING ORGANIZATION
Knowledge Based Systems Laboratory REPORT NUMBER
Department of Industrial Engineering KBSL-89-1 007
Texas A&M University
College Station, TX 77843 _ ___________

r.. SPONSORI'J0/MONITORIMS AC--;Cv 'AMES(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
Armstrong Laboratory REPORT NUMBER
Human Resources Directorate AL-TP-1 991-0044
Logistics Research Division
Wright-Patterson AFB,_OH_45433-6503 _____________

11. SUPPLEMENTARY NOTES

128. DISTRIBUITIONAVAILABILITY STATEMENT Ti2b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

I&3ABSTRACT (Maximum 200 words)

This paper outlines the theoretical foundations necessary to construct a Neutral Information Representation
Scheme (NIRS) which will allow for automated data transfer and translation between model languages.
procedural programming languages, database languages, transaction and process languages, as well as
knowledge representation and reasoning control languages for information system specification.

14. SUBJECT TERMS IS. NUMBER OF PAGES
constraint languages Information representation methods 70
engineering management Information systems Information systems
formalization programming languages 16. PRICE CODE
information engineering systemc tngineering ___________

17. SECURITY CLASS'FI(CATION 168. SECUIR"T CLASSIFICATION 19e SECURITY CLASSIFICATION 120. LIMITATION OF ABSTRACTI
or- R!PeR - OF THIS PAGE OF ABSTRACT U
Unclassified j Unclassified Unclassified UL________

NBN 7540.1.26000 taRdFornWe(v 2-M
Prscibed by ANSIftZ3-t

Contents

Introduction 5

1 Motivation 5

2 First-order Languages (
2.1 Vocabulary 7
2.2 Grammar 10

3 First-order Semantics 13
3.1 Structures and Interpretations 13

3.1.1 Interpretations of Constants and Function Symbols . . 13
3.1.2 Interpretations of Predicates 14

3.2 Truth 15
3.2.1 Variable Assignments 15
3.2.2 Truth Under an Assignment 16
3.2.3 Truth 19

4 Logic 19
4.1 Propositional Logic 19

4.1.1 Axioms for Propositional Connectives 20
4.1.2 Rules of Inference: Modus Ponens 21

4.2 Predicate Logic 22
4.2.1 Axioms for the Quantifiers 22
4.2.2 Rules of Inference: Generalization 24

4.3 Identity 25
4.3.1 Identity and Expressive Power 25
4.3.2 Axioms for Identity 26

5 Constraint Languages 28
5.1 Basic Set Theory 29

5.1.1 Membership 29
5.1.2 Basic Set Theoretic Axioms 30
5.1.3 Finitude rrd the Set of Natural Numbers 34
5.1.4 Difference, Intersection, and the Empty S. 34

iii

5.1.5 Functions and Ordered n-tuples. 35
5.1.6 The Intended Semantics: The Cumulative Hierarchy

of Sets 36
5.2 Constraints Revisited 37
5.3 Information Structures: An Intuitive Account 38

6 Summary 41

Appendix A - An Overview of IDEFi 43

Appendix B - Formal Information Structures 56

iv

Preface

This paper describes the research accomplished at the Knowledge Based Systems

Laboratory of the Department of Industrial Engineering at Texas A&M University.

Funding for the Laboratory's research m Integrated Information System Development

Methods and Tools has been provided by the Logistics Research Division of the Armstrong

Laboratory's Human Resources Directorate, AL/HRG, Wright-Patterson Air Force Base,

Ohio 45433, under the technical direction of USAF Captain Michael K. Painter, under

subcontract through the NASA Research Institute for Computing and Information Systems

(RICIS) Program at the University of Houston. The authors and the design team wish to

acknowledge the technical insights and ideas provided by Captain Painter in the

performance of this research as well as his assistance in the preparation of this paper.

Aocesson uFor

S I "C T'AB .

9,

OINSPLCTED -

4 .-- '
"

' J',# " -lp "
:)L.9

Ditv'

Summary

A method can be thought of as a distillation of good practice for a particular system

development situation. Formalization of a successful engineering, management,

production or support technique into a method is done in hopes '-' raising the performance

of the novice practitioner to a level comparable with that of an expert through the

appropriate use of the method. Individual methods are normally accompanied by a special

purpose graphical language that serves to provide focus and display emphasis for the major

concepts that need discovery, concensus or decision relative to a specific system

development life cycle activity. Experience has proven that personal and organizational

preferences for particular methods are likely to continue making it necessary to somehow

isolate the information gathered and displayed by one method such that it can be used in

other stages of the life cycle, or be displayed in alternative forms.

This paper outlies the theoretical foundations necessary to construct a Neutral

Information Representation Scheme (NIRS) which will allow for automated data transfer

and translation between model languages, procedural programming languages, database

languages, transaction and process languages, as well as knowledge representation and

reasoning control languages for information system specification.

vi

Introduction

This document presents the theoretical foundations for information repre-
sentation languages of both graphical and textual varieties. It is intended

to serve as a framework for providing rigorous syntax and semantics of ex-

isting and proposed information analysis, design, and engineering methods.
The purpose of such a framework is to provide information representation

language designers with the guidance necessary to allow for automated inter-

model data transfer and translation. Thus, this document should be viewed

as the structure for an information model data exchange specification. Fi-

nally this theory is motivated by the need for a general theory of information

representation. Thus, this theory serves as the first step towards achievement

of a Neutral Information Representation Scheme (NIRS) for an Integrated
Development Support Environment (IDSE) that can serve as the platform for

a seamless Computer Aided Softward Engineering (CASE) environmient. Sec-

tion 1 of this document describes the motivations and considerations behind

the proposed theory. Section 2 introduces a restricted first-order language
syntax that is proposed as the bounding syntactic structure for informa-

tion modeling languages. Section 3 provides a model theoretic semantics for

those languages, and Section 4 a corresponding logic. Section 5 describes the

application of these concepts to constraint languages.

1 Motivation

The Air Force Integrated Information Systems Evolution Environment

(IISEE) project represents a comprehensive research effort to develop tech-

nologies critical to effectively manage, control, and exploit information as

a resource. The resulting developments will provide integration suppcrt

methodologies, frameworks, and experimental tools to support integrated

information management systems development and evolution.

One of the key premises on which this program is based is the recogni-

tion of the need for a suite of information modeling methods to service the

large number of tasks and user/developer roles in an evolutionary integrated

information system development process. Each method in this suite is de-

signed to serve a particular class of human users performing specific tasks nr

decision processes. The individual methods normally are accompanied by a
special purpose graphical language that serves to provide focus and display
emphasis for the major concepts that need discovery, consensus, or decision
relative to that task. The problem with this approach is that these syntactic
features restrict the infcrmation that can be stated in the language.

The seamless CASE concept is focused on development of the technologi-
cal components and management methods for seamless software engineering
environments. The term "seamless" is meant to convey the integrated nature
of the methods and tools provided to the software implementer. The plural-
ization of the term "environments" is meant to convey the fact that different
seamless case environments will be defined for different software types.

This particular document is the result of research which began as an ef-

fort to define a constraint specification language for a particular information
modeling method known as IDEF1.1 An overview of the method and its for-
malization are fau_-d in Appendices A and B. As the effort progressed, it was
recognized that the emerging language structures were similar to those being
investigated for the conceptual schema representation language for the IDSE
seamless CASE environment and for the Neutral Information Representation
Scheme to be used to provide the basis for an evolving system description
capable of supporting automated knowledge based model translation. The
theory presented in this report has been used as the formal foundation for a
family of languages that will serve the above described purposes. This family
of Information System constraint languages (ISyCL) is described in [1].

2 First-order Languages

The basis of our account will be the notion of a first-order language. First-
order languages are flexible, expressively quite rich, and extremely well un-

derstood. They are used extensively in mathematics, linguistics, philosophy,

'See, e.g., 12) and 131. "IDEF" was originally an acronym for "ICAM Definition Lan-
guage," but the suite of IDEF methods has since evolved independently of its ICAM
origins. Hence, like "NCR" (formerly an acronym for "National Cash Register"), 'IDEF"
is now simply a name like "George," and an acronym no longer.

and computer science whenever clarity of expression is especially important.
Many familiar mathemt.tica theories such as the theory of sets, boolean alge-
bra, topology, etc., can be elegantly expressed in first-order terms. More re-
cently first-order languages have found their way into the domain of artificial
intelligence, where first-order languages find straightforward representation
in familiar Al programming languages like LISP and PROLOG. Indeed, first-
order mathematical logic is the formal foundation of PROLOG-an acronym
for PROgramming in LOGic.2)

Generally speaking, a first-order language C is a formal language. That
is, it is a formal structure consisting of a fixed set of basic symbols, often
called the vocabulary of C, and a precise set of syntactic rules, its grammar,
for building up the proper sentences, or formulas, of the language that are
capable of bearing information.

2.1 Vocabulary

The basic vocabulary of a first-order language consists of several kinds of
symbols:

* Constants

" Variables

" Function symbols

" Predicates

* Logical symbols.

Constants are symbols that correspond to names in ordinary language.
For many purposes, it is useful to use abbreviations of names straight out of
ordinary language for constants, e.g., j for John, wp for Wright-Patterson, v
for Venus, o for Ohio, etc. When we are describing languages in general and
have no specific application in mind, we will simply use the letters a, b, c, and
d, perhaps with subscripts; we will assume that we will add no more than

2See, e.g., [4].

3

finitely many subscripted constants to our language.3 Constants are usu-

ally lower case letters, with or without subscripts, but this is not necessary.
Indeed, it is often useful to use upper case.

We will often want to say things ab it an "arbitrary" constant as a way

oi talking about all constants, much as one might talk about an arbitrary
triangle ABC in geometry --s a way of proving something about all triangles
in general. For this purpose it will not do to 4alk specifically a*bout a given

constant, a say, since we want what we say to apply to all constants generally.

This requires that, when we are talking about our language, we use special

metavariables whose roles are to ser'e as placeholders for arbitrary constants
of our language, much as "ABC" above serves as a placeholder for arbitrary

triangles. Thus, metavariables "x- not themselves part of our first-ord, r

language L, but rather part of the extended English w- are using to talk
about the constants that are in the language. We will use the lower cse

sans serif characters a, b, c for this purpose.
Next are the variables, whose purpose will be clarified in detail below.

The lower case letters z, y, and z, possibly with subscripts, will play this
role, and we will suppose there to be an unlimited store of 'hem. We will

use the characters x, y and z as metavariables over the store of variables in

our language.

Third, we have function symbols. These symbols correspond most closely

in natural language to expressions of the form "The X of," where X is a

common noun phrase like "color," "yearly salary," "mother," etc.. or expres-
sions of the form "The Y-est X in," where Y is an adjective like "smart" or
"mean," and X once again by a common noun phrase. Common noun phrases

typically express general properties. For any common noun phrase CNP, the

result of replacing X with CNP in either of the above forms (together with

an adjectivw for Y in the second form) intuitively names a function f that,
when applied to a given object a, yields the appropriate instance f(a) of the

property expressed by the CNP for that object. Thus, where X is "color,'

the resulting function in the first form yields the color)f the object to which

it is applied; where it is "yearly salary," the resultirg function yields an ap-

3The restriction to a finite number of constants Iere is not at all essential, but constraint
languages in general will use only finitely many; the same holds for predicates and function
names below.

4

propriate dollar amount. Similarly, "The smartest woman in" expresses a
function that takes piaces--e.g., cities, universities, etc.-and yields for each
such place the smartest woman therein.

For the ,n st part we will confine our attention to "one-place" functions
such as those ,oove that take a single object to another obje, t. But as we
will see there are occasions when we will want to represent functions of more
than one argument as well. Examples of expressions that stand for two-place
functions are "The only child of ... and ... " and "The sum of ... and"
Intuitively, the former expresses a partial function4 from couples with a single
chi'] to that child, and the latter simply expresses the addition function,
which takes two given numbers to a further number, viz., their sum.

As with constants, in practice it is often convenient to abbreviate relevant
ordinary language functional expressions in defining the function symbols of
a formal language. Again, we will use the letters f, g, and h, possibly with
subscripts, for our basic function symbols, and coiresponding sans serif char-
acters as metavariables. Function symbols designed to stand for functions
of more than one argument will be indicated with an appropriate numerical
superscript. As above, we will suppose there are only finit-ly many of these
symbols in oir language.

We also introduce the symbol e, and stipulate that where g stands for
any n-place function symbol in our language, and f stands for any one-place
function symbol, then f e g is an n-place function symbol as well. This
corresponds in ordinary language to the fact that we can nest functional
expressions, e.g., --The salary of the father of the smartest woman in largest
university in ... ," or "The successor of the sum of ... and"

The fou.th gro-up of symbols in our language consists of n-place predi-
cates. n > 1. One-place predicates correspona roughly to verb phrases like
'is t computer scientist," "has insomnia,," "is an employee," Lnd so forth,
all of which express propertiet. Two-place predicates correspond roughly to
trans;'iive verbs like "loves," "is an element of," "is less than," "begat," and

".e., a function that might not be defined on every element of its domain. E.g., the
square root function is only a partial function on the natural numbers, since it is not
defined on those numb,,rs which are not squares of other numbers. The function in !.e
text here is partial because its intuitive domain is the set of pairs of humans, and not
every such pair has a single child.

f!

"lives with," which express two-place relations between things. There are

also three-place relations, such as those expressed by "gives" and "between,"
and with a little work we could come up with relations of more than three

places, but in practice we shall have little cause to go much beyond this.

We will use upper case roman letters such as P, Q, arl R for predicates,
and again corresponding sans serif characters as metavariables over pred-

icates. Occasionally predicates will appear with numerical superscripts to

indicate the number of places of the relation they represent, and if necessary

with subscripts to distinguish those with the same superscripts. It is often
useful to abbreviate relevant natural language expressions. Most languages

contain a distinguished predicate for the two-place relation "is identical to."

We will use the symbol - for this purpose.

To drive home the difference at this point between predicates and func-

tion symbols, note that a function symbol combines with names to yield yet
another name-like (i.e., referring) expression: e.g., to draw on ordinary lan-

guage, the function symbol "the husband of" combines with the name "Di"

to yield the new referring expression (or definite description, as such are of-

ten called) "the husband of Di." On the other hand, a (one-place) predicate

combines with a name to form a sentence, something that can be true or
false, not a name-like expression. Thus, the predicate expression "is happy"

combines with the name "Di" to yield the sentence "Di is happy." The same

is easily seen to hold for n-place predicates generally.

The last group of symbols consists of the basic logical symbols: -. , A, V,

, =-, the existential quantifer 3, and the universal quantifier V, about which

we shall have more to say shortly. We will also need parentheses and perhaps

other grouping indicators to prevent ambiguity.

2.2 Grammar

Now that we have our basic symbols, we need to know how to combine them

into grammatical units, or well-formed formulas, the formal correlates of sen-

tences. These will be the expressions that can encode the sort of information

we will want to express in our theory (and more). This is done recursively

6

as follows. 6

First, we want to group all name-like objects into a single category known
as terms. This group will of course include the constants, and for reasons
below, it will include the variables as well. But recall the discussion of
function symbols above. There we saw that an expression like "The yearly
salary of" seems to name a function on objects. But the values of functions
are objects as well. Thus, when we attach a name, "Fred," say, to the
functional expression above, the result-"The yearly salary of Fred"-is a
sort of name for Fred"s yearly salary. Thus, we count the result of attaching
a functional symbol to an appropriate number of constants and/or variables
as a term as well; and such terms can also be among the terms that a function
symbol attaches to. Thus, more exactly, letting tl,t 2 ,.-, stand for arbitrary
terms and f stand for an arbitrary function symbol, if tl,... ,t,, are terms
and f is an n-place function symbol, then f(tl,... ,t,,) is a term as well.

Terms formed out of certain familiar two-place function symbols, exam-
ples of which will be introduced below, are more commonly written in in-
fiz notation, rather than the prefix notation just defined, with the function
symbol flanked by the two terms, rather than preceding them. Thus, for
a two-place function symbol f and terms t,t', the term f(t,t') can also be
written as tft'. So, for example, +(2, 3) can be written as 2 + 3.

Next we define the basic formulas of our language. Just as verb phrases
and transitive verbs in ordinary language combine with names to form sen-
tences, so in our formal language predicates combine with terms to form
formulas. Specifically, if P is any n-place predicate, and tl,... ,t, are any
n terms, then Pt, ... tn is a formula, and in particular an atomic formula.

To illustrate this, if H abbreviates the verb phrase "is happy," and a the
name "Annie," then the formula Ha expresses the proposition that Annie
is happy. Again, if L abbreviates the verb "loves," b the name "Bob," c
the name "Charlie," and f the expression "the fiance of," then the formula
Lbf(c) expresses the proposition that Bob loves Charlie's fiance.

Often when one is using more elaborate predicates drawn from natural

'That is, the definition is given in such a way that complex cases of the class being
defined are defined in terms of simpler cases of the same class. Recursive definitions thus

ten look circular, but they are not, as they always begin with well-grounded initial cases
not defined in terms of other members of the class being defined.

7

language, e.g., if we had used LOVESinstead of L in the previous example, it
is more readable to use parentheses around the terms in atomic formulas that
use the predicate and separate them by commas, e.g., LOVES(b,z) instead
of LOVESbz. Thus, more generally, any atomic formula Pt, ... t,, can be
written also as P(tl,... ,t,). Furthermore, atomic formulas involving some
familiar two-place predicates like , and a few others that will be introduced
below, are more often written using infix rather than prefix notation. For
example, we usually express that a is identical to b by writing a : b rather
than z ab. Thus, we stipulate that formulas of the form Ptt' can also be
written as tPt'.

Now we begin introducing the logical symbols that allow us to build up
more complex formulas. Intuitively, the symbol -' expresses negation; i.e.,
it stands for the phrase "it is not the case that." Since we can negate any
declarative sentence by attaching this phrase to the front of it, we have the
corresponding rule in our formal grammar that if o is any formula, then so is
--W. The symbols A, V, D, and - stand roughly for "and," "or," "if...then,"
and "if and only if," which are also (among other things) operators that form
new sentences out of old in the obvious ways. Unlike negation, though, each
takes two sentences and forms a new sentence from them. Thus, we have
the corresponding rule that if V and ip are any two formulas of our language,
then so are (W A A), (W V), (1P), and (W =_).

Finally, we turn to the quantifiers 3 and V. Recall that we introduced
variables without explanation above. Intuitively, 3 and V stand for "some"
and "every," respectively; the job of the variables is to enable them to play
this role in our formal language. Consider the difference between "Annie is
happy," "Some individual is happy," and "Every individual is happy." In
the first --se, a specific individual is picked out by the name "Annie" and
the property of being happy is predicated of her. In the second, all that is
stated is that some unspecified individual or other has this property. And in
the third, it is stated that every individual, whether specifiable or not, has
this property. This lack of specificity in the latter two cases can be made
explicit by rephrasing them like this: for some (resp., every) individual r,
z is happy. Since the rule for building atomic formulas counted variables
among the terms, we have the means for representing these paraphrases. Let
H abbreviate "is happy" once again; then we can represent the paraphrases

as 3xHx and VxHz respectively.
Accordingly, we add the final rule to our grammar: if to is any formula of

our language and x is any variable, then 3x p and VxW are formulas as well.
In such a case we say that the variable x is bound by the quantifier 3 (resp.,
V), and we say that the formula o is the scope of the quantifer 3 in 3xo, and
it is the scope of the quantifier V in Vxcp.

3 First-order Semantics

3.1 Structures and Interpretations

We have motivated the construction of our grammar by referring to the
intended meanings of the logical symbols and by letting our constants and
variables abbreviate meaningful expressions out of ordinary language. But
from a purely formal point of view, all we have in a language is uninterpreted
syntax; we have not described in any formal way how to assign meaning to
the elements of a first-order language. We will do so now.

A structure for a first-order language L consists simply of two elements:
a set 2) called the domain of the structure, and a function Y known as
an interpretation function for L. Intuitively, V is the set of things one is
describing with the resources of L, e.g., the natural numbers, major league
baseball teams, the people and objects that make up an air force base, or the
records inside a database. The purpose of Y is to fix the meanings of the
basic elements of L in terms of objects in or constructed from V.

3.1.1 Interpretations of Constants and Function Symbols

The interpretation function works like this. First we deal with terms. We
begin by noting that variables will not receive an interpretation, since their
meanings can vary (they are variables after all) within a structure. They will
be treated with their own special semantic apparatus below. Constants on
the other hand, being the formal analogues of names with fixed meanings, are
assigned members of V once and for all as their interpretation; in symbols,
for all constants r. of £, Y(K) E D.

9

To deal with terms formed from function symbols, we need first to in-
terpret the function symbols themselves. To begin with, each basic function
symbol a is assigned a function .F(a) from V into V. As indicated above,
the functions expressed in ordinary language are often partial; that is, they
are often not defined everywhere. For example, the function expressed by
"The salary of" is not defined when applied to a conveyer belt or a garden
vegetable. This suggests that we ought to let tne functions from V into V
that interpret our function symbols be partial. This leads to certain inel-
egancies in our formal apparatus, however, so we opt instead to include a
distinguished object I in our domain V whose sole purpose is to be the
value of functions applied to objects on which they are intuitively undefined.
Thus, if we have a function symbol f abbreviating "The salary of," and if our
domain V contains both persons and conveyer belts, then the interpretation
of f will be the function that takes each person to his or her salary in dollars,
and every other kind of object to our distinguished object I. Formally, then,
for all basic n-place function symbols a of C, Y(a) E {4, I t : Vn --. D;
that is, the interpretation of a basic n-place function symbol a of C is going
to be an element of the set of all n-place functions from the set of n-tuples
of the domain V) into V.

Now we need to address the nonbasic function symbols, i.e., those of the
form a * P which correspond to nested functional expressions in ordinary
language like "The salary of the father of." Intuitively, we want .F(a e f) to
be the composition of F(P) with .F(a), i.e., F(a) o .F(f), where in general
(k o *)(m) = *(4(x))s--in terms of our example, the composition of the
function expressed by "The salary of" with the function expressed by "the
father of." Notice that by our trick with I, the composition of any two
functions will always be total.

3.1.2 Interpretations of Predicates

Finally, for any one-place predicate P, we let .F(P) be a subset of V-
intuitively, the set of things that have the property expressed by P. And
for any n-place predicate R, n > 1, we let .F(R) be a set of n-tuples of ele-

eNote that o is a metalinguistic symbol of our extended English that expresses the
meaning of our object language symbol e, viz., the composition function.

10

ments of V--intuitively, the set of n-tuples of objects in D that stand in the
relation expressed by R. Thus, for example, if we want L to abbreviate the
verb 'loves," then if our domain V) consists of the population of Texas, then
F(L) will be the set of all pairs (a, b) such that a loves b. Formally, then, for
all n-place predicates P, F(P) _ D".'

If one wishes to include the identity predicate - in one's language, and
have it carry its intended meaning, then one needs an additional, more spe-
cific semantical rule designed to do this. Identity, of course, is a relation that
holds between any object and itself, but not between itself and any other
object. This additional semantical constraint is easy to express formally:
if our language £ contains -, then the interpretation of _ is the set of all
pairs (o, o) such that o is an element of the domain V, i.e., more formally,
F()= {(o,o) I o E }.

3.2 Truth

3.2.1 Variable Assignments

Given a structure M = (E).F) for £ (cf. the definition at the beginning of
Section 3.1) we can define what it is for a formula of C to be true in M.
As usual, this is done recursively. First we need to introduce the notion of
an assignment a for the variables, which is a sort of addendum to our inter-
pretation function: it assigns members of the domain to variables. Relative
to an assignment function a, we can define the interpretation of a complex
term f(ti,... ,t,,), for any function symbol f and any terms ti,... ,t,,. An
interpretation function T alone does not suffice for this since complex func-
tional terms might contain variables, e.g., the term f(r), which are ignored
by interpretation functions. But if we supplement F with an assigment a
for the variables, then we have something for the function Y(f) to work on.
Specifically, the interpretation of the term f(z) under a, Fa(f(z)), is just
the function F(f) applied to a(z), the value assigned to z by a.

7Where)1 = , and),+1 = Ir x ; i.e., P 1 is just 7) itself, D2 is the set of all pairs
of members (i.e., the Cartesian product D x V) of D, 7)3 the set of all triples of members
of V, and in general 7'P is the set of all n-tuples of members of D.

11

In general, then, let F0, be the result of adding a to .T.' Then the interpre-
tation .F0 (f(tl,... ,t,) of a complex term f(tl,... ,t,,) under a is simply the
result of applying the function .(f) (which is just F(f), since f is a function
symbol) to the objects F0 (t1),... ,Ya(t,), i.e., Y0 (f)(Y 0(t),... ,.c"(tn)).

3.2.2 Truth Under an Assignment

Atomic Formulas Our goal in this section is to define the notion of a
formula being true in a structure M. To do so, we will first define a closely
related notion, viz., that of truth under an assignment a. For convenience,
we will sometimes speak of a formula being "true, in v" instead of being
"true in M under a." We start by defining this notion for atomic formulas.
So let be an atomic fornula Pt ... t,. Then W is true. in M just in case
(Y.(t,),... ,.(t,.)) E F ..(P). Intuitively, then, where n = 1, Pt is true, in
M just in case the object in V that t denotes is in the set of things that have
the property expressed by P. And for n > 1, Pt, ... tn is true. just in case
the n-tuple of objects (01,... ,o,) denoted by tl,... ,tn respectively is in the
set of n-tuples whose members stand in the relation expressed by P, i.e., just
in case those objects stand in that relation.

Let us actually construct a small language £* and build a small structure
M* to illustrate these ideas. Suppose we have four names a, b, c, d, a
single function symbol h (intuitively, to abbreviate "the husband of"), a one-
place predicate H (intuitively, to abbreviate "is happy"), and a three-place
predicate T (intuitively, to abbreviate "is talking to ... about"). Let us also
include the distinguished predicate ;z, though we will make no real use of it
until later. We will use x, y, and z for our variables.

For our structure M*, we will take our domain V to be a set of three
individuals, {Beth, Charlie, Di}, and our interpretation function 9 will be
defined as follows. For our constants, Q(a) = G(b) = Beth, Q(c) = Charlie,
and 9(d) = Di. (Beth thus has two names in our language; this is to illustrate
a point to be made several sections hence.) For our function symbol h,
we let G(h)(B3eth) = Q(h)(Charlbe) = ± (so that Q(h) is "undefined" on
Beth and Charlie), and (h)(Di) = Charlie. For our predicates H and T,

"1.e., if t is a constant, function symbol, or predicate, 7'(t) = Y (), and if t is a
variable, then 7.T(() =a().

12

we let C(H) = {Beth, Di} (so, intuitively, Beth and Di are happy), and
g(T) = {(Beth, Di, Charlie), (Charlie, Charlie, Di)} (so, intuitively, Beth
is talking to Di about Charlie, and Charlie is talking to himself about Di).
Following the rule for , we let G(-) = {(Beth, Beth), (Charlie, Charlie), (Di,
Di)}. Finally, for our assignment function /f, let us let /(z) = /(y) = Charlie,
and 8(z) = Di.

Let us now check that Hd and Tbdh(z) are true in M* under P. In the first
case, by the above, Hd is true0 in M* just in case Go(d) E Gp(H), i.e., just
in case Di is an element of the set {Beth, Di}, which she is. So Hd is true0 in
M*. Similarly, Tbdh(z) is trueo in M* just in case (go(b),go(d),Go(h(z))) E
Q0(T), i.e., just in case ((b),G(d),Q(h)(#(z))) E g(T), i.e., just in case
(Beth, Di, Q(h)(Di) E {(Beth, Di, Charlie), (Charlie, Charlie, Di)} i.e., just
in case (Beth, Di, Charlie) E {(Beth, Di, Charlie), (Charlie, Charlie, Di)}.
Since this obviously holds, the formula Tbdh(z) is trueo in M*.

A formula is false, in a structure M, of course, just in case it is not true.
in M. It is easy to verify that, for example, Hh(b), Hz, and Tdbc are all
false0 in M* under /.

Conjunctions, Negations, etc. Now for the more complex cases. Sup-
pose first that W is a formula of the form --0. Then i is true0 in a structure
M just in case 0 is not true, in M. In so defining truth for negated formulas
we ensure that the symbol -, means what we have intended. Things are much
the same for the other symbols. Thus, suppose p is a formula of the form
,0 A 0. Then W is true. in M just in case both '0 and 0 are. If W is a formula
of the form 'k V 0, then W is true0 in M just in case either 0) or 0 is. If is a
formula of the form b D 0, then W is true, in M just in case either '0 is false
in M or 0 is true0 in M. And if p is a formula of the form k -0, then W is
true0 in M just in case 0 and 0 have the same truth value in M.

The reader should test his or her comprehension of these rules by verifying
that -,Hh(b) and (Tbdh(z) A Tccy) D Hd are both true in M* under /.

Quantified Formulas Last, we turn to quantified formulas. When we in-
troduced the quantifiers above, we noted that "Some individual is happy,"
i.e., 3.Hz, can be paraphrased as "for some value of the variable 'z,' the
expression 'z is happy' is true." This is essentially what our formal seman-

13

tics for existentially quantified formulas will come to. To anticipate things a
bit, 3xHx will be true in a structure M under a, roughly, just in case the

unquantified formula Hx is true in M under some (in general, new) assign-
ment a' such that a'(x) is in the interpretation of H. It is easy to verify that

this formula is true in our little structure M* under fl, when we look at a
new assignment function 6' that assigns either Beth or Di to the variable z.
Thus, 3zHz should come out true in M* under 0.

But we have to be a little more careful, because some formulas-Tcxz, for
example-contain more than one unquantified variable. Thus, when we are
evaluating a quantification of such a formula-3zTcxz, say-we have to be

sure that the new assignment function a' does not change the value of any of

the unquantified variables-in this case, the variable x. Otherwise we could

change the sense of the unquantified formula in mid-evaluation. Under the

assignment function / above, 3zTczz intuitively says that Charlie is talking
to himself about someone (recall that /(z) = Charlie), and this should turn

out to be truep in M* since Charlie is talking tn himseif about Di, i.e.,

(Charlie, Charlie, Di) e !q(T). But suppose all we require is that there be
some new assignment function 3' such that 0'(z) is Di. Then it could turn
out also that ff'(z) is Beth. But then the formula Tc.z would not be true
in M* under /3, since Charlie is not talking to Beth about Di, i.e., (Charlie,

Beth, Di) V g0 (T), and hence we would not be able to count 3zTcxz as true
in M* under # after all as we should like.

All that is needed is a simple and obvious restriction: when evaluating

the formula 3zTcxz, the new assignment function that we use to evaluate
Tcrz must not be allowed to differ from / on any variable except z (and even

then it needn't differ from fl; in which case it is/3). More generally, we put

the matter like this: if wo is an existentially quantified formula 3xV), then V

is true in a structure M under a just in case there is an assignment function

o just like a except perhaps in what it assigns to x such that the formula 'b

is true in M under a'. If (p is a universally quantified formula Vx~k, then o

is true in M under a just in case for everv assignment function a' just like

a except perhaps in what it assigns to x the formula V) is true in M under

a'. That is, in essence, V is true in M just in case ' is true in M no matter

what value in the domain we assign to x (while keeping all other variable

assignments fixed).

14

The reader can once again test his or her comprehension by showing in

detail that 3xTzbh(z) is false in M* under f and that Vz(Hz VTbdz) is true

in M* under fl.

3.2.3 Truth

Now, finally, we can define a formula to be true in a structure M simpliciter

just in case it is true. in M for all assignments a, and false in M just in

case it is false. in M for all a. Note, on this definition, that for most any

interpretation, there will be formulas that are neither true nor false in the

interpretation. Our example 3zTbxz above, for instance, is neither true nor

false in M*, since there are assignments a on which it comes out true-all
those on which a(z) = Di-and assignments a on which it comes out false,-

all those on which a(z) # Di. Such formulas will always have free variables,

since it is the semantic indeterminacy of such variables that is responsible

for this fact. However, note that some formulas with free variables will be

true or false in some models, though these will typically be logical truths

(or falsehoods) like Hz A -Hz, i.e., formulas which are not capable of true

(reso., false) interpretation.

4 Logic

4.1 Propositional Logic

Now that we have the notion of a first-order language and its semantics, we

want to capture the meanings of the logical constants -, A, V, D, =, V,

and 3 as explicated in the semantics. We will do this in the usual way by

developing a rigorous and precise logic. A logic, in the sense relevant here,

is a systematic characterization of correct principles of reasoning with re-

spect to a given duster of concepts. The concepts here axe those expressed

by the logical constants above, corresponding roughly, once again, to the

ordinary language concepts of negation (not, or it is not the case that), con-

junction (and), disjunction (or), material implication (if ... then), material

equivalence (if and only if), existential quantification (some), and universal

quantification (every, or all). The form such a system takes usually consists

15

of two components: axioms and rules of inference. We start with the axioms
for the propositional connectives.

4.1.1 Axioms for Propositional Connectives

The axioms for the propositional connectives -', A, V, D, and = constitute
the basis of propositional logic and can be thought of as characterizing their

meanings. There are many equivalent axiomatizations for propositional logic,

but the following, which makes use of the notion of an axiom schema, is one
of the easiest. An axiom schema is not itself an axiom, but rather a sort of

template, a general form any instance of which is an axiom. Axiom schemas

are thus not themselves actually part of the language. Thus, where W, 0,

and 9 are any formulas, any instance of any of the following schemas is an

axiom:

Al poD (I D W)

A2 (o D(, D0)) ((W D, ,) D (W D)

A,3 (cp DO) D ((-v DO) DO)

In English, Al says essentially that if a sentence Wo is true, then for any
other sentence 0, if i is true then W is still true. A2 says that if a sentence Wo

implies that if 0 is true then so is 0, then if V implies 1k, then it also implies

0. Finally, A3 says essentially that if a sentence W implies another sentence

0, then if 0 is also implied by the negation of V, then 0 is true no matter

what (since either W or its negation is true no matter what). These axioms

seem trivial. However, like the elementary truths of arithmetic or geometry

that are second nature to us now, they must be explicitly stated as a basis

for deriving other, less obvious truths; they cannot be conjured out of thin

air.
Notice that axiom schemas only use the two connectives -' and D. Even

though we have been using the other propositional connectives all along,

officially we will consider these to be our two "primitive" connectives; the

others can be defined in terms of them as follows (where the symbol =df

means "is defined as"):

16

Def 1: (,pVO) =,U('

Def 2:-(k ^ d v(-

Def3: (W-O)=df(DO)A(,0 Di)

The reader can again test comprehension by showing that, no matter what
truth values are assigned to V, 7, and 0, the two sides of each definition

will always have the same truth values when evaluated in accord with the
semantical rules given above for the connectives in Section 3.2.2.

4.1.2 Rules of Inference: Modus Ponens

A logic is not much good without rules of inference, which are rules that
allow us to move from statements that we know or assume to be true at the
outset (e.g., our axioms), to new statements that follow logically from them
(called theorems). Without them, all we could do is write down axioms; there
would be no way to infer new truths from those already given. There is only

one rule of inference in propositional logic:

Modus Ponens (MP): If the formulas V and , D i follow from the axioms
of propositional logic, then we may infer that 0 does as well.9

As a simple example using our language £*, consider the following proof

of Hd D Hd, i.e., the statement If Di is happy, then Di is happy. Note that,
trivial as it is, Hd D Hd is not an instance of an axiom schema, and hence

if it is to be a theorem of our system, it must be derivable from the axioms
using our rule of inference MP. This is in fact the case. As an instance of

Al, we have
Hd D ((Hd D Hd) D Hd).

As an instance of A2 we have

(Hd D ((Hd D Hd) D Hd)) D ((Hd D (Hd D Hd)) D (Hd D Hd)).

'Given this, the notion of theoremhood can be defined precisely as follows. A formula
is a theorem of propositional logic if and only if there is a sequence pa,---, p. such that

V. is jp and each V, is either an axiom or follows from previous lines by MP, that is, there
are previous formulas w,,jpk, j, k < i, such that ipA is W, D W,. We can also define the

notion of a formula 4, following from a set of formulas r in the same way except by adding

in addition that 4 in the above definition could also be a member of r.

17

By MP, it follows from these two statements that

(Hd D (Hd D Hd)) D (Hd D Hd).

But
(Hd D (Hd D Hd))

is an instance of Al again, hence by MP once more we can infer Hd D Hd
from the latter two statements.

There are many equivalent systems of propositional logic that are more
streamlined and computation ally more efficient than the basic system here;
but this is the foundation oLt which they are all built and illustrates well
enough how the process of deduction works.

4.2 Predicate Logic

4.2.1 Axioms for the Quantifiers

When we add axioms for the quantifiers to propositional logic, we have full
predicate logic, £'so known as first-order logic and quantification theory. The
quantifiers are interdefinable, so we only need to take one of them as prim-
itive. The axioms for predicate logic are usually stated in terms of the uni-
versal quantifier V, so we will take that as our primitive, and shall define 3

as follows:

Def 4: 3xW =d -Vx-W.

That this definition is correct is clev- on a moment's reflection. So, for
example, there exists an z such th-.t r is happy, i.e., someone is happy, just

in case it is not that case that for all z, x is not happy, i.e., just in case not
everyone is unhappy.

We can now state three new quantificational axiom schemas. For any
formula W and term t, we let Vt stand for the result of substituting all
unbound occurrences of x in ro with t. Then any instance of the following is
an axiom:

'4 Vx~o D Vt , so long as t does not contain, and is not itself, a variable that

becomes bound in W'.

18

A5 Vx(p D O) D (Vxp D Vxi).

A6 V D VxV, where x does not occur unbound in V.

The intuitive idea behind these axioms is straightforward. A4 simply says
that if something is true of everything in general, it is true in particular of
anything we can name. Thus, for example, Vx(NUM(x) D 3 y(y = r + 1)) D

(NUM(24) D 3(y = 24 + 1)); i.e., if for every number there is a number one
greater than it, then in particular there is a number one greater than 24.

Reverting to our language C* and its structure M*, we have as an instance
of this axiom schema

Vx(Hx V 3yTxxy) D (He V 3yTccy).

The antecedent here (i.e., the formula to the left of the D), Vx(HxV 3yTzxy),
is in fact true in M*, i.e., in M*, everyone is either happy or talking to
themselves about someone in M*. Thus, if we were to count this as a further
"special" axiom-i.e., a nonlogical piece of information that characterizes the
situation in the specific structure we are investigating and which might Vell
not hold in other structures-we would be able to prove (by Modus Ponens)
that (Hc V 3yTccy), i.e., that Charlie is either happy or talking to himself
about someone.

The second schema A5 captures another aspect of the meaning of "every."

Consider a simple example: if every individual is such that if it is red then
it has a color, then if in fact every individual is red, then every individual
has a color. This is just an unsymbolized instance of A5, and illustrates its
validity.

And finally, A6 simply says that a quantifier does not affect the truth of
a formula W if the quantifier does not bind a variable that does not occur in

Vo or-what amounts to the same thing-occurs in o but is bound by another
quantifier. So, for example, if it is true that Beth is ha ,py, Hb, then it is
also true for every value of x that Beth is happy, VxHb. Similarly, if Charlie
is talking tc -omeone about Di, 3zTczd, then it is also true that for every

value of x, Charlie is talking to someone about Di, Vx3zTczd.

19

4.2.2 Rules of Inference: Generalization

The move to predicate logic with its quantified formulas necessitates a further
rule of inference, one designed to capture how we reason with universal quan-
tification. As usual, the idea is best illustrated by an example. Suppose you
wanted to prove something about all prime numbers, for example, that for
every prime there is a greater prime. You might begin by saying something
like "Let p be an arbitrary prime number." You might even pick a specific
prime, for example, 17. Then, by appealing to none of the specific properties
of your chosen prime that distinguish it from other primes, e.g., that it is less
than 100, or Plato's favorite number, etc., you proceed to prove in the usual
way that there is another prime greater than p. You then conclude that the
same is true for every prime. What permits you to do this is precisely the
fact that you did not appeal to any properties of p that do not hold for all
primes; it was, in a precise sense, arbitrary.

This sort of example illustrates the inference rule known as Generaliza-
tion. Informally, if you can prove that something is true of a particular
individual o without appealing to anything that could not be proved of ev-
erything else in the domain, then that same thing is true of everything. The
way we capture this idea of not appealing to anything that could not be
proved of everything else is by restricting generalization to formulas whose
proofs contain no formulas that say anything about the object being gener-
alized upon. Thus, we can say that if e, follows from r and the axioms of
predicate logic, and t does not occur (free) in F, then Vxo follows from r
and the axioms of predicate logic. If, then, t refers to the object o, then the
absence of t from the formulas in F indicates that they say nothing about o.
In fact, we can actually use a simpler but equivalent inference rule that only
generalizes on variables:

Gen If W follows from the axioms of predicate logic, then VxV does as well.

We noted above that special, or nonlogical, axioms are designed only to
hold within a given structure one has singled out, e.g., a structure that models
a certain manufacturing or engineering system one might be investigating.
A special axiom thus captures the "logic" things within a restricted sphere.

Genuine logical axioms, however, should be exceptionless; a logical axiom

20

formulated within a given language C should be true in all structures of C.
When this property holds of all the axioms of a logical system, the system is
said to be sound. Soundness is an essential property of any logical system,
since it is precisely the job of its logical axioms to capture features that hold
in any of its structures. Any axiom that was not true in every structure could
therefore not rightfully be considered a logical axiom, and would have to be
rejected. It is straightforward (and a good exercise) to show that, for a given
language L, any instance of any of the above axiom schemas, and anything
provable from them, in fact has this property.10

The converse of soundness, that any formula true in every structure fol-
lows from the axioms, is known as completeness, and is much harder to
prove. While its absence from a formal system is perhaps not as disastrous
as the absence of soundness, completeness is nonetheless a very important

and desirable property for a formal system to have, since it shows that the
semantics and the logic of the system match up precisely. It is provable that
both propositional and predicate logic are complete.

4.3 Identity

4.3.1 Identity and Expressive Power

A very important concept within most any type of formal system is that
of identity, which we will express in our languages by means of the 2-place
predicate ;." Identity adds a great deal of flexibility and expressive power to
a language. Identity is particularly useful in languages that contain function

symbols, for with identity one can explicitly identify a named object as the
value of a certain function. For example, in our language *, we can express
that Charlie is Di's husband, c - h(d).

Second, identity can be used to express the definite article "the." When
we ascribe a property to something only identified as "the W"-that the

person Charlie is talking to himself about is happy, say-we are implying
1°The proof proceeds by ordinary mathematical induction on the number of quantifiers

and connectives a formula contains.
"We use as our identity predicate within languages; this is to be distinguished from

the concept of identity as it appears in our metalinguistic talk about languages and their
structures, which we have been expressing with the more familiar

21

three things: (i) that there is something that fits the description (P-that
there is someone Charlie is talking to himself about-(ii) that nothing else
fits it-that Charlie is not talking to himself about anyone else-and (iii)
that that 'hing has the property in question-that the object of Charlie's
attention is happy.12 All three of these components axe easily expressed in
one formula with the help of the identity predicate. Thus, our example here is
expressed in our language £* as follows: 3x(Tccz A -3y(Tccy A x : y) A Hx).

The force of the "anyone else" in (ii) above here is captured by the negated
identity predicate here in the formula: anyone other than, i.e., not identical
to, the person in question.

Finally, similar techniques can be employed to express numerical notions
without appealing explicitly to numbers. For example, one can express that
at least two philosophers are wealthy as 3x3y(PxAPyAx 9 y). Note that the
third conjunct here is necessary, since the bare statement 3x3y(PxAPy) does
not imply there are two wealthy philosophers-both x and y could be assigned
the same unique wealthy philosopher as their values (convince yourself of
this by referring back to the section on the semantics of 3). In a similar
fashion, one can express that there are exactly two wealthy philosophers:
3x3y(Px A Py Ax 6 y A Vz(Pz D (z t xVz y)), i.e., in English, there are

at least two wealthy philosophers x and y, and any wealthy philosopher is
identical with either x or y. Finally, one can also say that there are at most
two wealthy philosophers: VxVyVz((PxAPyAPz) D (x - yVx - zVy Z z)).
Check to see that this statement will be true if there are fewer than three
philosophers, and false otherwise. These forms are easily generalizable for
any finite number.

4.2.2 Axioms for Identity

Most systems of predicate logic include the notion of identity among the
logical constants of the system. Given one standard (though debatable) con-
ception of logic as the study of the most general principles of reasoning, this
seems quite appropriate, since identity is a notion that seems applicable to
most any domain about which one might reason. Irrespective of the issue

12This is the essence of Bertrand Russell's theory of descriptions, first developed in his

famous paper "On Denoting," Mind 14 (1905).

22

of whether identity is a logical notion, it is certainly a notion one might of-
ten want to use within a formal system that has been tailored for a certain
purpose, and in particular, it is essential to our constraint languages. How-
ever, the only way to ensure that the identity predicate carries its intended
meaning within a given system is to build that meaning into the system by
means of appropriate axioms. The usual axioms for identity are, as above,
presented in the form of schemas, and are also straightforward:

A7 t - t, for any term t

AS x z t D (W D W), so long as t does not contain, and is not itself, a
variable that becomes bound in .

A7 captures the point made above, that identity holds between any object
and itself. A8 is nearly as intuitive. The idea is simply that if something is
true £f a given object, then it does not matter how the object is referred to;
it is still true of it. 3 If, for example, Mark Twain wrote Huckleberry Finn,
then it follows that Samuel Clemens did as well, since they are the same
person. That is, more formally, by A8 it is an axiom that

m . s D (WROTE(m, h) D WROTE(s,h).

If again we add m : s as a special axiom, or derive it from other in-
formation we possess, we can then prove by MP that WROTE(in, h) D
WROTE(a, h). If we then have in addition the further information that
WROTE(m, h), we can prove by MP once again that WROTE(s, h).

As a second example, let us revert to our language £ once again, in

"aThere are well known exceptions to this. For example, suppose Shorty is five feet tall,
and that his real name is "Eddie." So Shorty - Eddie. Nonetheless, from the fact that
Shorty is so-called because of his size, it dofm riot follow that Eddie is so-called because
of his size. Other famous contexts where this principle seems to break down are those
involving psychological attitudes like belief. For example, even though I believe that 9 is
prime, I may not, due to my rusty calculus, believe that f' :2dz is prime, despite the fact

that fL z~dx = 9. In the semantics and logic we are constructing it is assumed that we
shall not be needing to formalize expressions like "is so-called because of" and "believes"-
though it should be noted that the apparatus we have developed here is eminently capable
of being extended to handle such expressions.

23

which we included the identity predicate. In that language, we have'both

a ,z c D (Ha D Hc)

and
a - b D (Ha D Hb)

as instances of A6. In M*, a - c is false, since Q(a) = Beth, and Q(c) =

Charlie. Thus, a - c would not be considered among any special axioms we
might have to characterize M*. Hence, as we should hope, we would not be
able to infer Ha D Hc, which is also false in M*. However, a z b is true in
M* (recall that we assigned both a and b to Beth as their interpretation),
and hence could be a special axiom for the situation characterized by our
structure. By MP we could then infer from the second of the two instances
above that Ha D Hb, and from Ha (which might be a further special axiom
perhaps) that Hb.

As one would hope, our logic remains sound and complete when we add
the axioms for identity.

5 Constraint Languages

Now that we have a well-developed logical foundation, we will begin to add
the particular elements that constitute a constraint language. In actuality,
there will be infinitely many possible constraint languages, since each set
of predicates specifies a different language. However, all of them will have
certain elements in common, and it is these common elements we want to
begin laying out now.

First, every constraint language will be a first-order language as described
above. Second, we will assume that a constraint language will contain the
basic resources of arithmetic-a distinguished predicate NUM, the numerals,
the usual function symbols +, ., and exp, and enough axiomatic power to
prove basic arithmetical facts. The intended semantics for any constraint
language will thus always contain the natural numbers, with these syntactic
items receiving the obvious interpretations. Third, every constraint language
will contain a certain amount of set theory. Throughout this discussion
we have been employing set theory in a rough and ready fashion in our

24

description of the model theory for first-order languages. In a constraint
language, we will want to be able to do this in a principled way.

The full theory of sets that one might find in a text book is very pow-
erful and very complex. However, the structures for which we are designing
ouL constraint langiagts are all relatively simple; indeed, they are all finite,
though we shall not need to assume this. Furthermore, we will not need
much more than the simplest set theoretic operations and constructions to
express what we want to express. Hence, all we need is enough set theory to
meet these limited needs. We will provide this, along with some motivation
and explication of the relevant concepts, in the next section.

5.1 Basic Set Theory

5.1.1 Membership

A set, intuitively, is just a collection of things which themselves may or may
not be sets. Usually we pick out a set with the help of some predicate, e.g.,
the set of all prime numbers, or American citizens, or track and field events in
the 1988 Olympics. But this is just for our benefit; any collection of things,
even if they cannot be picked out by a common property, indeed even if they
cannot be picked out by us in any way at all (as is the case, e.g., with most
infinite collections of natural numbers), still form a set. We will see shortly
that we have to be a little more careful than this about the sets we daim to
exist; but this at least gets our intuitions going about what sorts of things
sets are.

The most basic relation a thing can bear to a set is that it can be a
member, or element, of the set. Thus, the number 17 is a member of the set
of all primes; George Bush is a member of the set of American citizens; and
the now unofficial race in which Ben Johnson beat Carl Lewis is a member of
the set of track and field events that took place in the 1988 Olympics. This
special relation is nearly always represented by the symbol E, and as with
all the two place set-theoretic relations we will introduce, we will use infix
rather than prefix notation. Thus, we will write a E b rather than Eab.

Logically, sets are just individuals like any others, and so we will use
constants to stand for thcm. And since not everything is a set, we will

25

introduce a special predicate SET to abbreviate "is a set." Since it will
often be convenient to say something general only about sets, we will set
aside the letters r, s, and t (again, perhaps with subscripts and primes) to
serve as special set variables that take only sets as values (and as before
corresponding sans serif characters to serve as metavariables). This way, we
will be able to say things about all and only sets without having to use the
predicate "SET" explicitly. For example, suppose we want to say that the
object a is a member of some set. Without these special set variables we
would have to express this as 3x(SET(x) A a E M). With them, however,
we can simply write this as 3s(a E s). Similarly, if we want to express that
every set is a member of some other set, without the set variables we have to
write Vx(SET(z) D 3y(SET(y) A x E y)), whereas with them we can simply
write Vr3s(r E a). In general, and more abstractly, if s is any set variable
that does not occur in a formula V, then Vx(SET(x) D V) is equivalent to
Vso and 3x(SET(x) A p) is equivalent to 3sWs (where, once again, V is the
result of replacing every unbound occurrence of x in V with an occurrence of
s).

It frequently happens that we want to say something V about some or
all the members of a given set s. In our current grammar, this would be
expressed as 3x(x E .5 A So) or Vx(z E s D Wp) respectively. For convenience
we allow that these forms can be abbreviated as (3x E s) V and (Vx E s) W
respectively.

5.1.2 Basic Set Theoretic Axioms

Russell's Paradox Sets combine and interact in many interesting ways,
but for deep and historically significant reasons, not every way in which
one might think. For this reason we need to set down clear principles that
tell us precisely when such combinations and interactions can occur, and
furthermore exactly what sets exist within a given domain. That is, we need
some set theoretic axioms.

In case the reader is not convinced of this need, consider the follow-
ing famous paradox, known as Russell's paradoz, after the famous philoso-
pher/logician Bertrand Russell who discovered it. As noted above, we often
pick out sets in ordinary contexts by means of some predicate or (more gen-

26

erally) description that holds of all and only the members of the set; Thus,
for example, one might want to consider the set of all Texans over thirty-
five who drink beer by means of the description "Texan over thirty-five who
drinks beer," or more formally, the description TEXAN(x) A age-of(z) >
35 A DRINKSBEER(x). Let us use the notation { I TEXAN(x) A
age of (z) > 35 A DRINKS BEER(x)} to name this set, and in general the
notation {x I V} to name the set of things that satisfy the description WO.
Now, intuitively, one would think that any such description io with a single
unbound variable picks out a corresponding set comprising the things that fit
the description. For after all, a set is just a collection of things; so in particu-
lar the collection satisfying a certain description is a set. Russell found that,
intuitions to the contrary, this is not always so. Consider the description "set
that does not have itself as a member," i.e., a a . (Remember that . is a set
variable.) Intuitively, there are all sorts of sets that satisfy this description:
the set of horses is not a horse and hence is not a member of itself, the set
of solar planets is not a planet, and so on. By the intuitive principle above,
there is a set of all sets that satisfies this description, i.e., there is the set
r = {s I a i al. But now ask yourself: is r a member of itself or not? If it
is, then since r is the set of all sets that are not members of themselves, it
follows that it is not a member of itself after all. If on the other hand it is
not a member of itself, then it satisfies the condition for membership in r,
i.e., it actually is a member of itself. Either way we contradict ourselves. So
there cannot be such a set as r after all, despite what our intuitins tell us.

The Axioms The lesson here is that not just any collection of things we
is a set. Hence the need for axioms that do not get us into the same sort
of trouble. For our purposes, we need surprisingly few: four axioms and one
axiom schema. The first axiom, extensionality, tells us when two apparent
sets are in fact identical viz., when they have exactly the same members:

ST1 VrVs(Vz(z E r _ z E) D r -_s),

i.e., for all sets r and a, if for any object z, x is a member of r if and only if
it is a member of a, then r and a are the same set.

The second axiom, pairing, is that any two objects (within a given do-

27

main) form a set:

ST2 V.VyA.(s z

where "{z, y}" is a name for the set that contains exactly the objects denoted
by x and y,. (By extensionality there can be only one such set.) Thus, to
make this proper, we need to add to our vocabulary the left and right braces
{,}, and to our grammar the rule that if tl,... ,t,, are any terms, then the
expression {tl,... ,t,,} is a term as well.14

The next axiom declares that the union of any set r exists, i.e., the set
whose elements are exactly the members of the members of r:

ST3 Vr3sV(y e=-- 3t(t E r A y E t)),

in English, for any set r there exists a set . such that for any object y, y is
a member of a if and only if there is a set t such that t is a member of r and
the object y is a member of t. For a given set r, we will let Ur stand for the
union of r. (U is thus a distinguished two-place function symbol, denoting
the (partial) function that takes any set to its union.) We will usually write
r U a for U{r, s}.

When one set a is a subset of another b (i.e., when all the members of a
are members of b) we express this with a distinguished predicate C as a C b.
The fourth axiom says that the set of all subsets of any given set exists:

ST4 Vr3sVx(x E s - r C r"),

that is, for any set r there is a set . such that for any object z, x is a member
of a just in case x is a subset ofr. If a C b and a 6 b, we say that a is a
proper subset of b, and we express this as a C b. For any given set a, the
set of all its subsets is called the power set of a. The (partial) function that
takes each set to its power set will be denoted by the distinguished function
symbol pow, and thus the power set of a will be denoted by pow (a).

"4 Strictly speaking, we can think of ourselves as adding infinitely many new function

symbols fl,f.... to our langaage, where each f,, is an n-place function symbol, each of

which can by convention be rewritten using the brace notation. The rewritten form of

each f, is thus evident by the fact that there are n terms between the braces, e.g., {a, b, c}

is the rewritten form of faabc.

28

Finally we come to our one set theoretic axiom schema, so-called because
it actually stands for infinitely many axioms of the same general form, one for
each formula of our language. It is called the axiom schema of separation, or
subsets. The idea is quite simple: given a certain set a and some description
W in our language, we can separate out the set of all the members of a that
satisfy the description. Formally, for any formula W,

ST5W V,3t E r(X E a E W(X)),

wL.ere p(x) is the result of replacing any unbound variable in ro with z. s

Russell's Paradox Revisited Given the separation axiom schema we are
able to reintroduce in a restricted form the notation for sets used in the

brief discussion of Russell's paradox above. The paradox arises when one
assumes one can generate sets arbitrarily with any given formula. Separation

allows one to use arbitrary formulas only to form sets from the members
of previously given sets, and this eliminates the problem; in this light, in

Russell's argument, for any given set a already proved to exist, one is allowed
to assume only the existence of the set {s (s E a A s 0 s), and this causes

no problems at all. Thus, we can safely add the following grammatical rule:
16 if is any formula, t any term, and x any variable, then {x I x E t A Wo is
a term as well. Similar to what we allowed with certain types of quantified

formulas, such terms can also be written as {x E t I }.

"SAssuming of course z does not become bound in the process; if it does, we can always
replace it in the above schema with a new variable not occurring in p.

Go0r more cautiously, it appears that we can do so safely for all we can tell. Due to

G6del's famous second incompleteness theorem, there is no way to prove that there are
not other hitherto undiscovered paradoxes lurking in the theory of sets; that is, we cannot
prove its consistency (at least, not without begging the question by proving it in a theory
that is at least as dubious). The great success of the theory over the past eighty-five years,
however, and the absence of any new paradoxes despite extensive use and scrutiny of the
theory, has given logicians great confidence that it is in fact consistent, even if we shall
never know this with utter certainty.

29

5.1.3 Finitude and the Set of Natural Numbers

As noted, we are assuming the existence of the natural numbers. It will prove
very useful then to assume in addition that they jointly form a set; this is
not provable from the above axioms. The easiest way to do this is just to
add an axiom that declares this explicitly:

NN 3sVx(x G s - NUM(x)),

i.e., there exists a set s such that for any object z, x is an element of s if and
only if x is a natural number. By the axiom of extensionality, there can be
only one such set. We will call it A(.

We are now able to define another useful notion. As noted, the structures
we will examine will be finite. Nonetheless, it will still be important to be
able to say explicitly that they are finite, and hence we need to be able to
express the concept of finitude. We can do this with the help of the set A(.
Specifically,

Def 5: FINITE(s) =df 3n E Ar(s - {m A(I m < n}),

where t - r means intuitively that t and r are the same size, i.e., that there
is a one-to-one correspondence between them. (This latter notion can also be
defined straightforwardly with the set theoretic apparatus at our disposal.)
Thus, a set is finite just in case it is the same size as the set that contains
all and only the natural numbers less than a given natural number n. The
number n is said to be the cardinality of the set.

5.1.4 Difference, Intersection, and the Empty Set

Many interesting and important facts about sets are derivable from the above
axioms. We will state two. The first is that the existence of the difference
a - b of two sets a and b, i.e., the set of elements of a that are not in b. (- is
thus a new two-place functions symbol.) It is easy to prove that a - b exists:
by union, a U b exists, and by separation, there is an s that contains just
those elements of a U b that are both in a and not in b.

The next thing we will prove is the existence intersection of any two sets,
where the intersection of sets a and b is just the set of all objects that a and

30

b both have as members. We will refer to this set as a n b, making use of the
distinguished two-place function symbol n. The proof that anb exists is also
easy: by union, U{a, b} exists; by separation, we then pull out the set of all
z E U{a, b} such that both x E a and x E b. In general, we can show that
the intersection of any number of sets exists in essentially the same way.

Notice that often there might be no elements common to two sets. None-
theless, their intersection is a perfectly good set: the empty set. We can
prove the existence of the empty set a bit more formally like this. We know
there are sets, since first-order logic guarantees the existence of at least one
object a, and by pairing it follows that the singleton set {a} exists. By the
schema of separation, letting W be the formula z z (i.e., --(x - X)), there
is a set s that contains all the members r of {a} such that x 9 x, i.e., all the
members of {a} that are not identical to themselves. But of course there are
no members of {a} that fit that description. So s is a set with no members,
i.e., the empty set. Following the usual practice, we will use the constant 0
to refer to this set. Two sets r and s are said to be disjoint if they have no
members in common, i.e., if r U a = 0. A set s of sets is said to be pairwise
disjoint if any two members of a are disjoint.

5.1.5 Functions and Ordered n-tuples

This set theoretic apparatus enables us to provide an elegant account of
certain other important notions. First, an extremely versatile and useful
notion is that of an ordered pair. An ordered pair is similar to a set of two
elements, except that unlike a set, which is an unordered collection, there
is a first member and a second member. Thus, where (a, b) stands for the
ordered pair whose first element is a and whose second element is b, what is
important about ordered pairs is that they satisfy the following principle:

OP VxaVyVzVwv((z, y) - (z,w) D (x _ z A y _ w)).

That is, ordered pairs are identical only if their first elements are identical
and their second elements are identical, i.e., only if, like any set, they have
the same elements, and, unlike sets-which have further structure beyond
their elements, those elements occur in the same order. The way we write

down names for the members of an ordered pair, unlike sets, is therefore

31

significant, since the first name we write down signifies the first element of
the pair, and the second name the second element. For example, whereas
{a, b} z {b, a}, we have in the case of ordered pairs that (a, b) 6 (b, a).

As it happens, we need not introduce ordered pairs as a new sort of object,
since with a little set theory it is easy to define them as sets of a certain sort.
There are many ways to lo this, but given that we will have numbers in the
semantics for all constraint languages, for our purposes the easiest way to pull
this off is simply by "marking the ;ntended first element of an ordered pair
with the number one, and the second with the number two. More I -ecisely,
we define the ordered pair (a,b) just to be the set {{a, 1},{b,2}}. It is easy
to check that ordered pairs so defined satisfy the above principle. More
generally, we can define the notion of an ordered n-tuple in the same way:
the n-tuple (a,,... ,a) is defined to be the set {{ai,},... , n}}.

Given the notion of an ordered n-tuple, we can give a more precise account
of the notion of a function. A oue-place function f from one set r to another
a is just a mapping that takes each element a of r (or some subset of r, if
f is partial) to an element b = f(z) of j. Thus, we can simply think of
such a function as a set of ordered pairs (a, b) where b is the element that
a is mapped to by the function f. More generally, an n-place function is a
set of ordered n + 1-tuples (al,... ,a,,an+l) where an+, is the object that
a,... ,a,, are mapped to by the function. Functicts thus turn out simply to
a type of set. The set of all one-place functions from one set r to another s

will be denoted by "s.

5.1.6 The Intended Semantics: The Cumulative Hierarchy of Sets

The above gives a good idea of how sets combine and interact, and 4: sets
we can suppose there to be, but it does not provide much of an idea of the in-
tended semantics for set theory and hence for constraint languages generally.
The intended picture of the structure of sets within a given domain is known
as the iterative, or cumulative, conception of set. On this conception, sets are
hierarchical; they come in levels. The lowerst level L consists of our initial
set of urelements, i.e., tiiings that are not themselves sets: numbers, people,
machines, buildings, strings, database records, countries, etc. The next level
L, consists of all possible subsets of L0 together with the urelements, i.e.,

32

L, = pow(LO)ULO. The next level L2 consists of all possible subsets of L1

together with all the elements L1 . In general, L,+, = pow(L,,)UL,,. Each

level is cumulative, i.e., it pulls up the elements of the previous level to join

all the sets that could be formed out of those elements. And so it contin-
ues through the sequence of natural numbers. The intended semantics for a
given constraint language, sets and all, is just the union of all these levels,
i.e., UiE Li. "

5.2 Constraints Revisited

With the above apparatus in place, we can return to the notion of a constraint

and offer an account that i; a little more precise. It is oir contention that

any current information modeling language, and most any language likely to

appear on the scene, can be translated into a subset of our language. There is

nothing particularly controversial about this daim, given the logical strength
of the language we have introduced. The only way to strengthen it in any

significant way would be to move to a full higher-order language and lugic; but
few if any concepts that need to be expressed in the domain of information

modeling, database modeling, and the like need anything approaching the
power of higher-order logic. Thus, our full-strength first-order language cur

logic cum set theory should be all we need to express anything that can be

expressed in any extant or likely modeling language.

The theory here is also expressive enough to define the intended se-

mantic structures that interpret these modeling languages, and expressive

enoug"1 to define the model theoretic connections-i.e., the interpretations
functions and variable assignments-between the languages and those struc-

tures. Thus, we will be able to define the notion of truth for formulas-or

functiknally similar syntactic expressions; let us call them assertions-of the

language, and hence we will be able to characterize when a given semantic

structure is a realization (in the sense of Section 3.2) of a given set of formu-

las or, more generally, assertions. We sketch an example of this in the next

xction.

" 7Though this is not anything we can say in the formal constraint language itself, since

we can only ise it to talk about things within its semantic domain-failure to realize this

ever-present semantic limitation is in fact what lies behind Russell's paradox.

33

Using these facts, we can flesh out the notion of a constraint more pre-
cisely. Let us call a set of formulas or assertions in a given modeling language

a diagram. As noted in the introduction, a modeling language might be put
to two very different uses: a descriptive, or de facto, use, and a prescriptive,
or de jure, use. Suppose a modeling language ML is being used with respect
to a given system S, and the modeler develops a specific diagram D. If ML
is being used descriptively, then the system S as it is should be capable of
being understood as a realization of D. That is, if the diagram D is a correct
description of S, it should be possible to consider S abstractly (at the time in
question) as a particular instance of an intended semantic structure for ML
that makes all the assertions in D true.

On the other hand, if ML is being used prescriptively, then it will not
necessarily be possible to consider S as it is to be a realization of D. This
will typically be the case for the prescriptive use of ML, since the function
of a diagram in such uses is to improve or alter the existing structure of the
system in question. The system will fail to realize the diagram. In such a
case, the assertions of D must then be considered not as descriptions of S, but
as constraints on S; they are assertions that must be satisfied by any state of S
that is to be deemed acceptable. The diagram, that is to say, is prescriptive
rather than descriptive. The realizations of D within the intended model
theory of ML can thus be thought of as abstract characterizations of the
acceptable states of S, the sorts of states that S is permitted to be in.

In both cases, then, de facto and de ?ure, D has realizations (so long as it
is not contradictory). Only in the former case is it assumed that the current
state of the system under scrutiny can itself be considered a realization of D.
In the latter, D will in general only have abstract (i.e., set theoretic) realiza-
tions which represent the acceptable states of the system. Given this, then,

a constraint can be defined simply to be an assertion within a prescriptive

diagram.

5.3 Information Structures: An Intuitive Account

Now that we have all this apparatus at our disposal, it should be put to good

use. We will demonstrate the power of the apparatus as well as some of the

ideas and claims mentioned above by using a constraint language to define a

34

general type of set theoretic structure suggested by the information modeling
technique IDEF1. (An overview of IDEF1 is found in Appendix A.) These
structures are similar to the entity-relationship-attribute structures defined
by Chen in his seminal 1976 paper 15], though we make explicit the element of
intensionality in such structures (see below). Despite their relative simp'icity,
we have found these structures to be very powerful and flexible mathematical
tools for characterizing many different types of information-bearing systems.
Consequently, for purposes here we will call them information structures. In
this section we will develop an informal picture of these structures using our
apparatus. A more formal treatment is found in Appendix B.

An information structure consists of four different types of objects: en-
tity classes, attribute value classes, attributes, and links. Entity classes, at-
tributes, and links are thought of as intensional entities, in the sense that,
unlike sets, they can have different members, or better, instances, across
time. Intuitively, the instances of entity classes at any given time are best
thought of as featureless "pegs" on which we hang clusters of information.
A good model for an instance of an entity class might be an internal pointer
within a computer's memory (the featureless entity itself) that points to a
collection of records on disk (the dusters of information) associated with,
say, a given employee in a company. Since we may keep several different
dusters of information on a single real-world individual-for instance, the
records on that individual in the role of an employee, and the records on
that same individual in the role of a secretary-we think of all the entity

classes as disjoint.
Attributes are (intensional) functions from entity class instances to at-

tribute values. Intuitively, an attribute-SALARY-OF, for example-takes
an instance e of an entity class-the class of employees, say-to the value
of that attribute applied to e, viz., in this case the salary of the individual

represented by e.
In the definition of an information structure one associates with each

entity classes a set (possibly empty) of attributes designated to be the ones
oumed by that entity class. For example, the deparment entity class might
own the attribute DEPTNUMOF, the employee entity class the attributes

EMPLOYEENUMOF and WORKS-IN, and the secretaries entity class
might own the attribute TYPING-SPEEDOF.

35

Links are functions from entity class instances tc mtity class instances.
That is, a link associates each instance of a given entity class with an in-
stance of another (possibly the same) entity class. Thus, for example, the
link WORKS-IN maps each instance e of the employees entity dass to the
department instance that e works for. Links come in three flavors: one-to-
one, strong many-to-one, and weak many-to-one. To illustrate these, suppose
that E and E' are entity classes in an information structure, -nd that I is a
link from E to E'. Then 1 is one-to-one if no two distinct instances of E can
possibly be mapped by I to the same instance of E'. I is strong many-to-one
if it is not one-to-one and, necessarily, every element of E' has at least one
instance of E mapped to it by 1. And I is weak many-to-one if it is of nei-
ther of the above two kinds. Note that if I is neither one-to-one nor strong
many-to-one, then every instance of E' always has zero or more elements of
E mapped to it by 1.

Since links are functions, they can often be composed to forge new links
between entity dasses. Suppose we have a one-to-one link WORKS-

FOR between the secretary entity class and the employee entity class to
indicate the link between (the cluster of information we keep on) secretaries
and (the duster of information we keep on) the employees they work for.
Then by composing this link with the link WORKS IN, we have a new link
WORKS IN * WORKS FOR from secretary to department, viz., the link
that maps the information about a given secretary to the department his or

her boss works for.
Since attributes are also functions, we can compose them with links to

generate new attributes. For example, if we compose the link WORKSIN
with the attribute DEPTNUMOF that is owned by the entity class de-
partment, we have a new attribute DEPTNUMOF e WORKS-IN that
maps each employee to the department number of the department he or she
works for. The new attribute DEPTNUMOF * WORKS-IN now associ-
ated with employee is said to be an inherited attribute in employee, and
we say that employee inherits the owned attribute DEPTNUMOF from
the entity dass department down the link WORKSIN. Finally, we say that
the inherited attribute DEPTNUMOF e WORKS-IN is derived from the
attribute DEPTNUMOF

Certain collections of the attributes-both owned and inherited-associ-

36

ated with a given entity class a, always able to distinguish every member
of the class from every other. A collection of attributes that does so in every

possible instantiation of the class and which does not contain any unneces-
sary attributes for that purpose is called a key class. Suppose employees in
different departments can have the same employee number, but employees
in the same department cannot. Then the class consisting of the attributes

DEPT-NUM- OF * WORKS-IN and EMPLOYEENUMOF constitute a

key class for the employee entity class. If we were to add SALARY-OF
to this class, it would still perform the same individuating function, but it
would not be a key class, since the added attribute is unnecessary to this

function.

Since the information we keep about objects, represented in their at-
tribute values, is usually the only way to distinguish them, every entity class
must have at least one associated key class. In addition, the following condi-

tions are required: (i) if I links the entity classes E and E', then E inherits

from E' all the attributes in some key dass of E' down 1; and (ii) if I is a one-
to-one link from E to E', then the inherited attributes of E that are derived
from the attributes of E' that E inherits from E' down I themselves form a

key class of E. The idea behind (i) is this: suppose that entity class E is
linked to E', and that instance e is mapped to instance e by this link. Then
all the information associated with e' becomes thereby associated with e in

virtue of the link between them. The idea behind (ii) is that, if in addition

the link is one-to-one, so that no other instance of E besides e is linked to
e', then the information in any key class of E' that distinguishes e' from all
other possible instances of E' also must distinguish e from all other possible

instances of E.
It will be useful to the reader at this point to see how these informal ideas

are explicated formally in the formal framework in the appendix.

6 Summary

The theory we have developed in this paper has several purposes. First, it

provides a language for model specification. That is, the theory can be used
to provide rigorous definitions of the syntax of a modeling methodology-so

37

that it is wholly clear exactly what constructs are permissible in the method-
ology and what are not-and a prec:se account of its semantics-so that mod-
elers have a clear vision of the sorts of structures they are to be identifying
and modeling with the methodology in question.

Second, the theory provides a broad and expressively powerful language
that can be used to supplement any given methodology by enabling it to
describe and express constraints otherwise inexpresssible in the methodology

proper. We saw examples of this above. This function of the theory can also
be useful in the design or modification phase of a given methodology, in that
it can point out dearly the logical form of the sorts of information that one
wishes to capture within the methodology.

Finally, the theory is powerful enough to capture the information content
of any model within any existing methodology-IDEF1, IDEF1-X, ENALIM, s

ER,19 etc.-and also, we believe, any likely model as well. It thus serves as
a foundation for the construction of a Neutral Information Representation
Scheme which has the capability of capturing information from a model de-
veloped using one type of methodology and transferring it-as faithfully as

possible-to a model constructed from another type of methodology. We
are to the point where we can begin thinking directly about the sorts of al-
gorithms and heuristics that will be needed to carry out such a task. The

framework here provides the necessary medium.

ILe., Enhanced Natural Language Information Modeling Method.
19 l.e., Entity-Relationship modeling method.

38

A An Overview of IDEF1

Before attempting any of the other chapters in this report the Integrated
Computed Aided Manufacturing (ICAM) DEFinition (IDEF) language, IDEF1
must be understood. IDEF1 has a simple and clean syntax which can be un-
derstood quickly. On the other hand, there is an art to modeling in any
methodology. IDEFI's design makes it imperative that the modeler under-
stand proper modeling discipline.

As in each of the following chapters, this chapter will begin with a dis-
cussion of IDEFI's history and purpose and then move onto its syntax and
semantics. Those familiar with the methodologies may not need to read the
syntax and semantics sections, but keep in mind that many methodologies
have several dialects. In order to understand the metamodels, it is important
that the reader understand which dialect is being modeled.. In general, the
original definitions of methodologies are strictly adhered to.

A.1 History and Purpose

The family of IDEF methodologies is meant to provide'methods and lan-
guages for discovery, representation, and consensus development of the views
of an enterprise necessary to allow for planning and design of integrated infor-
mation systems. That is, the IDEF methodologies were specifically developed
for supporting the domain experts and systems analysts in gathering infor-
mation about the existing environment and achieving consensus within the
environment relative to those descriptions. IDEFO was developed to model
the decisions, actions, and activities within a domain and the relationships
among those activities. IDEF1 provides the methods for discovery and rep-
resentation of the logical structure and relations between basic information
groups actually managed by an organization. IDEF2 provides a method for
development of quantitative simulation models that allow the study of time
varying behavior of a system that is stochastic in nature. IDEF3 supports
the direct capture of domain experts descriptions of process flow and object-
state transitions. IDEF5 is under development to support the capture and
representation of domain knowledge, concepts, and terminology (sometimes
referred to as domain ontologies). IDEF1X was the first IDEF methodology

39

to focus on support of system design activities. IDEFIX data incorporates

criteria for efficient conceptual schema design. IDEF4 was developed later
to support the design of object-oriented systems, particularly systems en-

compassing the use of object oriented databases. As a family, the IDEF

methodologies provide the modeler with the ability to concentrate on views
of an enterprise without using a sledge hammer methodology meant to model

all views.
IDEF1 models the information managed within a system, though closely

related to IDEFIX it is not a subset of IDEF1X. IDEF1 and IDEF1X are
similar, but by providing a methodology for data modeling and consequently

conceptual schema database design, the developers of IDEF1X added con-
structs which cloud the distinction between data which is kept about objects
and the objects themselves. This was necessary since a conceptual schema
by definition is a type of data dictionary (albeit a complex on-line dictio-

nary used to provide both access and control to distributed electronic het-
erogeneous databases). Thus, a conceptual schema designer must develop a

structure that can both contain the data objects and the information about

those data object (such as their physical system location). IDEF1 however,
was designed to be both more general and less commitfed to any particu-

lar implementation concept. In a properly developed IDEF1 model there
should never be any misconceptions, only the information kept within an

organization about objects (physical, abstract or data) is being modeled.

IDEF1 entities need not correspond directly to any particular object in

the real world, the IDEF1 model represents the modeler's analysis results.

The analysis method results in a reconstruction of the underlying structure
and grouping of the information actually managed. In the real world these

logical groups of attributes may be distributed over many data artifacts.

Also, since data can be kept by the organization about any object, (physical,
abstract or data) this flexibility is necessary when attempting to establish

information requirements. However, it is not constraining enough when doing

database design (hence the need for IDEFlX, IDEF4, Entity Relationship

(ER) and other design methods.
As with any of the IDEF methodologies, IDEF1 has primarily been used

by defense contractors under contract to the Air Force. Hughes has a propri-

etary version of IDEF1 called ELKA (Entity Link Key Attribute). IDEFI's

40

connection with defense projects is good in that a strong underlying analysis
method has been developed for the application of IDEF1 modeling. With the
emergence of the recognition of the need for a system development frame-
work of methods and the availability of low-cost integrated tools for IDEF1
application, we can expect to see IDEF1 gain more widespread usage.

A.2 Syntax and Informal Semantics

A.2.1 Basic Syntax

The lexicon of the IDEF1 language syntax consists of just four basic symbols
(see Figure ??):

" Labeled boxes denoting entity classes,

" Labeled lines with five different types of diamond shaped terminators
denoting relation classes,

" Labels inside the boxes denoting attribute classes,

* Parenthesized (or underlined) sets of labels denoting key classes.

A.2.2 Entity Class, Attribute Class, and Key Class

The concept of an entity class is meant to capture the notion of a basic
information structure the extension of which at any point in time is a set of
informational items called entities. A basic concept behind the notion of an
entity is that:

" they are persistent (i.e. the organization expends the resources (time,
money, equipment or facilities) to observe, encode, record, organize and
store the existence of individual entities),

" they can be individuated (i.e. they can be identified uniquely from
other entities).

41

Symbol denoing
an entity class

Entity Class LAbel

Symbols denoting
atribute classes

(WWW W, Yf

Aturibute class label XX

SSymbols denoting

key classes

Figure 1: IDEFI Graphical Lexicon

42

Member entites

'<$SN, 361-34-9843-

<cSalu'y, 45k> /

(EMP#)
(SSN)
Salary

Sex -42,EMPLOYEE 2

Figure 2: Card file interpretation of an IDEF1 entity class.

The IDEF1 language does not provide a means of representing the indi-
vidual entities only groups of entities which share exactly the same types of

attributes. These groups from an IDEF1 view are called classes. A useful

memory aid for this notion is to think of the entity class as a layout for a
card file (See Figure 2). An entity class has a name and a unique iden-

tification number associated with it, along with a glossary entry and a list

of synonyms. An entity class is represented by a rectangular box with the

label of the entity class located in the lower left corner of the entity class

surrounded by a smaller rectangle and with the entity class number located

in the lower right corner of the larger box.
An entity class is actually defined by the set of attribute classes that

define the characteristics of all the possible entities in all of its extensions.

It is important to note that the set of attributes is more important than the

43

EMP# SSNSAL.ARY ADDRESS

EMPP#

(SSN)

Addres
EMPL 1 42

Figure 3: Bucket analogy

notion conveyed by the label on the entity class name! In other words, one

can think of the entity class as simply a labeled bucket with no meaning

beyond that of the collection of attribute classes it contains (see Figure 3).

In fact, it is considered good practice to use an entity class label that does

not name a physical or data object in the domain since that could confuse an

uninformed reader. The labels of the attribute classes that define an entity

class are simply listed in the entity class box below the key class designators

and above the entity class label.
The occurrence of the same attribute class in multiple entity class dcfini-

tions defines a relationship between those entity classes. In order to establish

the existence dependency between such entity classes, one entity class must

be determined to be the owner of the shared attribute class. Every attribute

class that ends up being a part of an IDEF1 model has exactly one owner

44

Dowl' belort <ST r T 345>
Ihn baesu it -COPR. 4.0>

GPR 1.9
/' l 1U.2

(SID) (SD) (SID)GPR GPRASO
ASSOC : SO

Figure 4: Example of the No-Null rule.

entity class. When deciding on the addition of an attribute class to an entity
class, two rules must be followed. The first is referred to as the No-Null Rule.

This rule states that no member of an entity class can take a null value for
its attribute that corresponds to the added attribute class (Figure 4).

The second rule, the No-Repeat rule, states that no member of an entity
class can take more than one value at a time for its attribute that corresponds
to the added attribute class (Figure 5).

Each entity class has associated with it at least one key class. A key
class is just a special subset of the attribute classes which define the entity
class. What makes such key class subsets special is that it can be determined
that for any instance, the values of the attributes of that instance (which

correspond to the attribute classes in a key class), collectively, will uniquely

identify that instance of the entity class from all other instances. In an IDEF1

45

<EW, Jhn e>Which owe goes 3er?

(EMP#) EM
EMPNAME O-A

EWLOYEE.EWO % ILN

Figure 5: Example of the Na -Repeat rule.

46

diagram, the key class subsets are located in the upper left corner of the entity
class for which the key class is being defined. Key classes are not named or
labeled, a key class is denoted by enclosing the subset of attribute classes
that make up the key class in parentheses or by underlining the subset. In
the metamodels of this report we will always use the parenthesis convention.
It should be noted that entity classes are allowed to have multiple key classes.
The multiple key classes would reflect multiple ways of identifying an entity
class instance. For example, in a model of a typical business environment,
an instance of an EMPL entity class might have multiple key classes. The
first would consist of the employee's name in combination with an employee
number. The second hey class may consist only of the employee's Social
Security Number. In both cases, an EMPL entity class instance could be
uniquely identified by either key class (see insert for example).

A.2.3 Link (or Relation) Classes

A link is a binary relationship that exists between two entities established
, the sharing of a common attribute(s) which must assume the exact same

value in each of the two entities involved in the link. J.n IDEF1 the gen-
eralization of all such links involving instances of the same two classes of
entities and the same shared class(es) of attribute(s) is called a link type, or
(more traditionally) link class. A link class establishes a binary relationship
between two entity classes that share a common attribute class. A link class
is represented by a line running between the boxes of the two entity classes.
A iabel, representing the name of the link class, is displayed over the line
representing the link. Because of the attribute class ownership property, a
link indicates a dependence of one entity class on the other entity class. The
dependent entity class is considered to be existent dependent since a mem-
ber of that entity class cannot exist unless the corresponding member of the
independent entity class already exists. In general IDEF1 uses links to rep-
resent common types of organizational constraints (sometimes referred to as
business rules) on the information that is managed. It should be noted that
not all of the business rules can be represented with the standard IDEF1 lan-
guage constructs. In another report we describe a constraint language called
the Information Systems Constraint Language (ISyCL). ISyCL (pronounced

47

Inependent entity cs Dependent entity class
in this relation in this relation/ e/

Figure 6: One-to-zero-or.-one Link Class.

icicle) is used to augment the standard IDEF1 language as needed in this
report to capture some of the more complex rules of indiiridual methods.

A link class also has a cardinality associated with it, specifying the num-
ber of members of each entity class that can be involved in a relationship
with a single member of the other entity class. Figure 6 shows the syntac-
tic representation of a one-to-zero-or-one (or, thought of functionally in the
other direction, one-to-one) relationship.
A link with this cardinality represents the fact that one member of the in-
dependent entity class can be associated with zero or one members of the
dependent entity class. However, each member of the dependent entity class
is associated with one and only one member of the independent entity class.

Figure 7 shows the syntactic representation of a weak one-to-many (or
functionally, weak many-to-one) relationship.
In this situation, an independent entity class member can be associated with
zero, one, or many dependent entity class members. Again, each member of
the dependent entity class is associated with one and only one member of
the independent entity class.

Figure 8 shows the syntactic representation of a strong-one-to-many

48

Independem entity class Dependent entity class
in this relation in this relation

Figure 7: Weak one-to-many Link Class.

(functionally, strong many-to-one) relationship.
Here, the independent entity class member must be associated with at least
one instance of the dependent entity class member. Again, each member of

the dependent entity class is associated with one and only one member of
the independent entity class.

Notice that IDEF1 does not allow a many-to-many relationship or a zero-
or-one-to-zero-or-one relationship in what is considered a final model. These
relationships make the dependency situation ambiguous. The resolution of
such uncertain situations (which often arise in the early phases of the cor-
responding analysis) often results in the analyst determination that the sus-
pected relationship is unsupported by the analysis data. Alternatively the
analyst may discover additional entity class(es) on which both of the entity
classes involved in "many-to-many" relationship are independent (an exam-
ple of this is shown in Figure 9).

Note also that, when specifying a one-to-many link class (either weak or
strong), there is no way of constraining that link to a spccific upper bound
(for example, a one to five relationship). Such details are left to ISyCL if
considered absolutely necessary.

49

ip t entity class Dependent entity class
in this ilation in this relation

DEATMENT EMPLOYE

Figure 8: Strong one-to-many Link Class.

A.2.4 Inheritance

Previously we noted that the sharing of attribute classes between two entity
classes was the basis for declaring the existence of a link class between those
entity classes. However, link classes are generally suspected (or proposed)
by the analyst prior to the discovery of exactly which attribute classes are
shared. IDEF1 also places certain restrictions on which attribute classes
may be (and must be) shared in order for a valid link class to be defined.
When a link class is defined between two entity classes, certain information is
shared between those entity classes. The attribute classes that make up the
key classes of the independent entity class must become attribute classes for
the dependent entity class. It is possible for the inherited attribute classes
to become part of the key class of the dependent entity class. In fact, the
attributes must become part of the key class when a link class has a one-to-
zero-or-one link cardinality. In the case of a strong-one-to-many relationship
the attributes that are shared cannot make up a key that would be a subset
of the key of the independent entity class from which they came.

50

t enityclas Dpendnt ntiy cassIndependent entity class
in tis elaionin tis elaionin this relation

Figure 9: Resolution of a many-to-many relation.

51

A A Formal Account of Information Structures19

In this appendix we will make use of our formal apparatus a little more
rigorously to give a general definition of an information structure. A note
before we continue. Once the notion of a formal language is defined, it is
often easier to mingle plain English with the constraint language for easier
readability. The only important point is that anything said in this more
informal fashion can be stated if need be in a purely formal way. We shall
follow this practice here.

In addition to the usual number theoretic and set theoretic apparatus, the
elements of our constraint language for the purpose of giving a general defi-
nition of information structures will contain a raft of new constants, function
symbols, and predicates. These are highlighted below in boldface or italic.
Also, since the distinction between object language and metalanguage should
be well understood by now, we .-ill revert to the use of the more standard
identity predicate = in the object language here.

A.1 Intensional Information Structures.

An intensional information structure (IIS) . is a seven-tuple (E, BL, OA, V,
CL, IA, F), where

" E is a finite set of objects known as e, ?ity classes,

* BL = U{BL-, BL° , BL ° } is the union of three pairwise disjoint finite
sets of objects known as basic link classes or basic link types,

" OA is a finite set of objects known as owned attributes,

* V is a set of sets known as attribute value classes.

" CL is a finite set of objects known as composite link classes (types), to
be described below,

" IA is a finite set of objects known as inherited attributes, and
19This work was partially supported by a grant from Tandem Computer Corporation.

52

* F = {back, front, owner, target, kc} is a set of functions described
below.

Intuitively, entity classes are the basic intensional types whose instances can
appear in concrete realizations, or instantiations, of an IIS. Basic link types
are functions in intension that map the entities of one type E-called the
back of the link type-to the entities of another (possibly the same) type
E'-called the front of the link type. And owned attributes are functions
in intension that map the entities of a given type E-called the owner of
the attribute-to a given attribute value class V-called the target of the
attribute. An attribute value class is thus to be thought of as the range of
possible values for a particular owned attribute. Modeling these intuitive
connections is the job of the first four functions in F. Specifically,

* back BL - E;

" front BL - E;

* owner : OA - E;

" target : OA - V;

That is. the function back maps a basic link type 1 E BL to an entity
class e E E, i.e., e = back(l). Similarly for the other functions. To enable
us to use more traditional functional terminology, we define the functions
domain = back U owner and codomain = front U target.

It is easiest to model the intuitive nature of composite links-the mem-
bers of CL-as finite sequences (i.e., n-tuples) of basic links. Call any such
sequence s = (l,... ,l,) happy just in case for all i < n (i > 0), back(1i) =

front(li+). 20 Then CL meets the condition
2'The idea is that a happy sequence represents a chain of connected link types such

that the back of each link type (save the one beginning the chain) is.the front of the
preceding one in the chain. Now in fact, the actual definition here represents this idea
backwards: the intuitive beginning of such a connected chain is actually as defined the last
member in the formal representation (11,.. . , In). However, this definition mirrors directly
the corresponding IDEF1 syntax for such chains, and hence in the long run makes for a
simpler semantics.

53

Cl: CL C {s I s is a happy sequence of basic link types }.

Given this, the functions back and front can be extended such that,

Def 6: For composite links L = (I,...),

* back(L) =d back(lt);

* front(L) =df front(11).

The definitions of domain and codomain can then be broadened to include
these newly defined extensions in the obvious way as well.

Henceforth, let L = BL U CL. The composite nature of composite link
types can be highlighted by defining an operator @ on L such that,

Def 7: For basic links 1, 1', and composite links L, L',

e l@l' =df (1,/'), if (1, l') E CL; otherwise ll' is undefined;

* M@L =df (1) -' L, if (1) - L E CL; otherwise 1©L is undefined;21

* L@l =df L -. (1), if L -- (1) E CL; otherwise LOl ii undefined;

e L@L' =df L -. L', if L L' E CL; otherwise L@L' is undefined.

Informally, then, X@Y signifies the composition of the link type X with the
link type Y.

Intuitively, an inherited attribute is the composition of a link type with
an owned attribute. Thus, modeling composition in terms of sequences as
we are, we specify that the set IA of inherited attributes meet the condition

C2: IA C {X I for some a E OA either for some I E BL, X = (a,1), or for
some L E CL, X = (a) - L}.

That is, a member of IA must be either, in the simplest case, a pair consisting
of an owned attribute (i.e., a member of OA) and a basic link type (i.e., a

21Where s - ' is concatenation, i.e., the result of tacking the sequence s' onto the end
of the sequence s.

54

member of BL), or else the result of tacking an owned attribute onto the
beginning of a composite link type.

We then extend the definition of @ such that,

Def8: ForaEOA, IEBL, LECL,

* a@l =df (a, 1), if (a, 1) E IA, and undefined otherwise;

" a@L =df (a) - L, if (a) - L E IA, and undefined otherwise.

Given this, we have

Def 9: For any inherited attribute A = a@L,

* owned-attr(A) =df a,

" link(A) =df L.

We can then extend the definition of the function owner to a function g-
owner (for "generalized owner") on the set of all attributes A = OA U IA
such that,

Def 10: For a E OA, g-owner(a) =df owner(a); for A E IA, g-owner(A) =df

back(link(A)).

That is, the g-owner of a given owned or inherited attribute, viewed as a
function, is its domain.

The last element kc of F, is a funtion from entity classes e to sets of
subsets of A-intuitively, the key classes of e-that meets the following condi-
tions:

C3: For all E E E, kc(E) $ 0,

that is, the set of key classes for any given entity class must be nonempty,
i.e., every entity class must have at least one key class.

C4: For all E E E, and for all K, K' E kc(E), K 0 K'. 22

22-, recall, signifies the proper subset relation. Note that this condition rules out the
possibility of an empty key class, since the empty set is a subset of every set, including
itself.

55

05: For all E E E, and for all A E Ukc(E), g-owner(A) = E,

that is, the attributes in every key class of a given entity class E must be
owned by E, i.e., have E as their domain.

Now we define the important notion of a walk and related concepts. These
will be used most directly to define information structures.

Def 11: Let E = (E 1,...,E,,) be a sequence of entity classes, let A =

(I1,..., I_) be a sequence of basic link types, and let W = (E, A). Then

* W is a walk (from E 1 to E,,) iff for all i < n, back(li) = E, and

front(l,) = Ei+1 , or back(l,) = E,+4 and front(i,) = E,.

" If W is a walk, then P is increasing iff for all i < n, if back(l,) = El,
then li E BL-, and if back(l,) = Ei+, then li E BL.

* W is cyclic iff E 1 = En.

I " is connected iff for all distinct Z, E' E E, there is a walk from E to
E'.

A walk, that is, intuitively, is a sequence of entity classes such that each

(save the last) Ei is connected to its successor Ei+j by a link type li, either

in one direction or the other. An increasing walk is one such that, when you
traverse the link types in a walk from El to En, there can be no decrease in

cardinality as you move from the extension of one entity class (see paragraph

on information structure realizations below) to that of the next. The final

two notions are self-explanatory.

Given this apparatus, we can state the last conditions on 1:

C6: 27 is connccted.

C7: 2 contains no increasing cyclic walks.

C8: For all 1 E BL, there is some K E kc(front(l)) such that for all A E
K, A@l E IA; 2 3 if I happens to be 1-1, i.e., if 1 E BL-, then in addition

{A@ I A E K} E kc(g-owner(A@l)).

23I.e., informally, if E is linked to E' via i, then all the attributes A in some key class of
E' are inherited into E, i.e., A@I E IA so that g-owner(A@l) = E and g-owner(A) = E'.

56

C8 captures the conditions on key classes noted in the final paragraph of the
previous section.

A.2 Information Structures and their Realizations

A complete realization of an IIS I is a 4-tuple (1, W, D, ext), where W is a
set of indices (intuitively, the set of all possible realizations of 1), D is a set
of objects (intuitively, the set of all possible instances of all the entity classes
in E) and ext is a function that, for each index w E W, maps elements of
E U OA U BF into objects of the appropriate sort as follows:

C9: For each E E E, ezt(w, E) C D.

C10: For all E, E' E E, and for all w E W, if E E', then ezt(w,E) n
ext (w, E') = 0.

Cll: For each A E OA, ext(w,A) E {f I f : ext(w,owner(A))
target(A)I.

C12: For each 1 E BL,

* ifl 5 BL-, then ext(w, L) E { fI f: ext(w, back(l)) ext(w, front(l))}.

* if1 E BL ° , then ezt(w,L) E {f If: ext(w, back(l)) - ext(w,front(l))}. 2"

" if I E BL*, then ext(w, L) E {f f: ext(w, back(1)) - ext(w,front(l))}.

Though in any given realization the extension of a member of BL- might
also be onto, that of a member of BL might also be one-to-one, and that
of a member of BL ° might be either one-to-one or onto, it should not be
possible that this could be the case without exception, i.e., in all possible
realizations. Thus, as further conditions on an IIS realization we have:

C13: For all I E BL,
24Where f is onto just in case every element of its range has something mapped to

it from its domain. The addition function on the natural numbers, for example, is onto
(every number is the sum of two numbers-itself and 0 for instance), while the square
function is not (not every number is the square of some number).

57

If I E BL there is a w E W such that ext(w, 1) is not onto;

* If I E BL' there is a w E W such that ext(w, 1) is not one-to-one;

If I E BL* there is a w E W such that ext(w, 1) is not one-to-one and
a w' E W such that ext(w, 1) is not onto.

Note that these conditions cannot be enforced in a database, since, e.g., there
is no way to tell whether a one-to-one link which has always been onto will
cease being so with the next entry. For instance, by coincidence, it might

have always been the case that every employee in a company has one child.
Then the extension of the link type from employee-children to employee
has always been one-to-one, despite that fact that this could change as soon
as any employee has a second child (supposing this is not prohibited by
company policy). The constraints above are thus to be thought of as design
constraints rather than descriptive constraints, and are important in the
construction phase of an information model or database.

For any L = (1I,. .. ,) E CL, ext (w, L) is the composition of the exten-
sions of the link types 1i at w, i.e., ext(w,L) = ext(w,l) o ... o ext(w,l,).
Similarly, where A is an inherited attribute a@L, ext(w,A) = ext(w,o-
att(A)) o ezt(w, link(A)).

As noted above, the role of a key class K within an entity class E is to
ensure that in every possible realization of an IIS, the instances of E can be
distinguished solely in terms of the values of the (extensions of the) attributes
in K in that realization. This is expressed formally by means of the following
constraint:

C14: For all E E E, for all K E kc(E), for all w E W, and for all x, y E
ext(w,E), if ext(w,A)(x) = ext (w,A)(y) for all A E K, then x = y.

As also noted, key classes must be "minimal" in the sense no proper subset
of a given key class may also meet C14; this is expressed as follows:

C15: For all E E E, for all K E kc(E), it is not the case that there is

an S C K such that for all w E W and for all x,y E ext(w,E), if for all

A E S, ext(w,A)(x) = ext(w,A)(y), then x = y.

58

Like the conditions on basic links across possible realizations above, and for
the same sorts of reasons, C15 also cannot be enforced on a database.

59

References

[1] Decker, L. P., and R. J. Mayer, "ISyCL Language Reference," Knowledge
Based Systems Laboratory Technical Report No. KBSL-89-1002, Texas
A&M University, 1989

[21 R. Mayer, "Cognitive Skills in Modeling and Simulation," Ph.D. Disser-
tation, Departmi- of Indi, trial Engineering, Texas A&M University,
1988

[3] Ramey, T. et al., "ICAM Information Modeling Manual (IDEF1)," Re-
port No. UM 110231200, Materials Laboratory, AF Wright Aeronautical
Laboratories, Wright-Patterson AFB, 1981

[43 Clocksin, W. F., and C. S. Mellish, Programming in Prolog, 3 d edition,
New York, Springer Verlag, 1987

[5] Chen, P., "The Entity-Relationship Model-Toward a Unified View of
Data," ACM Transactions on Database Systems I (1976), pp. 9-36

60

